Time Series Econometrics: Some Basic Concepts Non-Stationary Variables

Outline

- Stationary: What & Why?
- 1. What & Why
- 2. How to Test Stationarity
- 3. How to overcome Non-Stationarity
- **Spurious Regression**
- Cointegration and Error Correction Model

Stationary

- Data: Stationary and Non Stationary
- Stationary: The mean, variance and covariance is constant and time invariant \circ E.g. let's \mathbf{Y}_t be a stochastic process, then;

 - Covariance: $\gamma_k = E[(Y_t \mu)(Y_{t+k} \mu)]$ (3)
 - Where γ_k , the covariance (or auto-covariance) at lag k,
 - If k = 0, we obtain γ_0 , which is simply the variance of Y (= σ^2); if k = 1, γ_1 is the covariance between two adjacent values of Y

Non-stationary

- The mean and variance is time varying or not constant:
- ✓ Random walk without drift (increasing in variance $\mathbf{Y}_t = \mathbf{Y}_{t-1} + \mathbf{u}_t$)
- ✓ Random walk with drift (variance and mean is not constant)

$$\mathbf{Y}_{t} = \mathbf{\delta} + \mathbf{Y}_{t-1} + \mathbf{u}_{t}$$

 \checkmark Random walk with drift around a stochastic trend (Y $_t$ = β_1 + $\beta_2 t$ + Yt_1 $_+$ ut)

Why?

- If the data is not stationary, than the OLS estimation is bias because the mean and the variance is time varying and not constant
- Unable to make prediction about the relationship among dependent and independent variables
- ➢Unable to perform forecasting for short term and also for the long term.

Unit Root Test – Three Types

- By graphical analysis Plot the graph whether to see the trend has change or has a constant variation
- Autocorrelation function (ACF) Box–Pierce Q statistic
- Unit Root Test
- i. Augmented Dickey Fuller Test (ADF)

How to detect stationary and non stationary

- In practice we face two important questions:
 - How do we find out if a given time series is stationary or not?
 - Is there a way that it can be made stationary?
- Prominently discussed tests in the literature are:
 - Graphical Analysis
 - The Unit Root Test

Graphical approach LGDP and LPDI

Autocorrelation Function (ACF)-significant test

- Q test the standard error test
- Hypothesis
- $H_0: \rho_k = 0$ (stationary)
- $H_a: \rho_k \neq 0$ (nonstationary)
- K=lag
- Critical value $\alpha = 5\%$

•
$$-1.96(se) < \rho_k < 1.96(se) = -1.96\left(\sqrt{\frac{1}{n}}\right) < \rho_k < 1.96\left(\sqrt{\frac{1}{n}}\right)$$
. $n = high observations$

• If the statistic $Q < \chi^2(\alpha)$ do not reject H null, mean the time series is stationary

Autocorrelation Function (ACF) for LGDP

Object View Proc O	uick Options Add-	ins	Windo	w Help) 		
Carriery LCDP Wor	LELA TIME SERIES DART	1.11	-titled\				
Series: LODP Won	CTILE: TIME SERIES PART	1::0	ntitieu	T			
View Proc Object Pro	operties Print Name	Free	ze 🗌 Sar	nple Ge	nr Sheet	Graph	Stats
	Correlogra	m of	LGDP				
D-to: 07/11/01 Time	- 40.00						^
Date: 07/11/21 1000 Semple: 107101 100	3: 19:00						
Included observation	21044 Joe: 84						
	3. 0 4						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
		1	0.065	0.065	01.095	0.000	
		2	0.905	-0.056	156.92	0.000	
		3	0.890	-0.029	227 50	0.000	
		4	0.851	-0.030	292.85	0.000	
		5	0.812	-0.016	353.15	0.000	
		6	0.773	-0.024	408.53	0.000	
		7	0.735	-0.017	459.19	0.000	
	I I	8	0.698	0.001	505.48	0.000	
	i]ii /	9	0.665	0.033	548.06	0.000	
	ן ון ו	10	0.632	-0.027	587.00	0.000	
	ן ון ו	11	0.597	-0.040	622.29	0.000	
		12	0.563	-0.020	654.05	0.000	
	ן יוןי ו	13	0.527	-0.037	682.33	0.000	
		14	0.492	-0.013	707.34	0.000	
	'['	15	0.456	-0.041	729.14	0.000	
		16	0.420	-0.023	747.88	0.000	
	ן ים י	17	0.380	-0.080	763.46	0.000	
		18	0.342	0.009	776.28	0.000	
	! ! !	19	0.307	0.004	786.76	0.000	
	! ! !	20	0.2/4	0.004	795.22	0.000	
		21	0.243	-0.001	801.98	0.000	
		22	0.211	-0.042	807.10	0.000	
		23	0.170	-0.034	010.92	0.000	
	:4: /	24	0.140	-0.025	015.00	0.000	
		25	0.117	0.000	016 1/	0.000	
		20	0.063	0.002	916.65	0.000	
		28	0.004	-0.035	916.84	0.000	
		20	0.030	0.035	040.00	0.000	¥

For LGDP, the value of the *Q* statistic up to lag 36 is about 821.51 The probability of obtaining such a *Q* value under the null hypothesis that the sum of 36 squared estimated autocorrelation coefficients is zero is practically zero show the that LGDP is nonstationary

· 🗖	1 1	21	0.243	-0.001	801.98	0.000	
· 🗖	101	22	0.211	-0.042	807.16	0.000	
	101	23	0.178	-0.034	810.92	0.000	
ı 🗖 i	101	24	0.146	-0.025	813.50	0.000	
1 D 1	1 1	25	0.117	0.006	815.16	0.000	
1 🛛 1	1 1	26	0.089	0.002	816.14	0.000	
1 j 1	1 1 1	27	0.064	0.016	816.65	0.000	
1 🛛 1	101	28	0.038	-0.035	816.84	0.000	
111	111	29	0.013	-0.013	816.86	0.000	
1 1	1 🛛 1	30	-0.008	0.030	816.87	0.000	
101	111	31	-0.028	-0.012	816.97	0.000	
i di i	1 1	32	-0.046	0.002	817.27	0.000	
101	1 1	33	-0.063	-0.002	817.82	0.000	
101	1 1	34	-0.078	-0.002	818.70	0.000	
	1 1	35	-0.092	-0.001	819.93	0.000	- 1
	1 1 1	36	-0.102	0.017	821.51	0.000	

ACF for LPDI

EViews - [Series: LPDI Workfile: TIME SERIES PART 1::Untitled\]

🔀 File Edit Objec	t View Proc Qu	iick	Options	Add-i	ns Wind	low H	lelp
View Proc Object Pro	operties Print Nam	e Free	eze 🗌 Sar	nple [Ge	nr[Sheet	Graph	St
							-
Autocorrelation	r aruar corretation		AC.	T AG	G-Otat	1100	
		1 1	0 964	0 964	80 852	0 000	-
1		- <u>-</u> 2	0.928	-0.012	156.74	0.000	
1		3	0.892	-0.031	227.62	0.000	
·		4	0.854	-0.028	293.53	0.000	
·		5	0.816	-0.040	354.38	0.000	
	1 11 1	6	0.777	-0.018	410.36	0.000	
·		7	0.740	-0.002	461.79	0.000	
·		8	0.707	0.037	509.36	0.000	
·	1 111	9	0.677	0.010	553.44	0.000	
·	1 1 1 1	10	0.646	-0.019	594.14	0.000	
·	1 1 1 1	11	0.615	-0.020	631.56	0.000	
·	1 1 1 1	12	0.585	-0.010	665.90	0.000	
·	ן יםי	13	0.552	-0.064	696.90	0.000	
·	'(''	14	0.517	-0.043	724.51	0.000	
·	1 1 1 1	15	0.483	-0.017	748.91	0.000	
· ====	'('	16	0.447	-0.038	770.12	0.000	
· ====	'('	17	0.409	-0.044	788.20	0.000	
· ===	'ף'	18	0.379	0.075	803.93	0.000	
· 🗖	'(''	19	0.347	-0.047	817.29	0.000	
· 🗖	ן יםי	20	0.313	-0.054	828.33	0.000	
· 🖻	' '	21	0.281	0.001	837.39	0.000	
· P	'¶'	22	0.248	-0.052	844.55	0.000	
· P	ן יפי	23	0.213	-0.054	849.93	0.000	
· P'	' '	24	0.180	-0.006	853.82	0.000	
· P'	' '	25	0.147	-0.008	856.46	0.000	
'	'!'	26	0.115	-0.021	858.09	0.000	
' P'	'¶'	27	0.083	-0.018	858.97	0.000	
· [·	'] '	28	0.054	0.010	859.35	0.000	
1 1 1		29	0.025	-0.023	859.43	0.000	
'] '		30	-0.001	-0.013	859.43	0.000	
		31	-0.026	-0.001	859.52	0.000	
<u>'</u> <u>'</u> <u>'</u> <u>'</u>		32	-0.049	-0.000	859.86	0.000	
<u>'</u> <u></u>		33	-0.070	0.000	860.55	0.000	
· · · · · · · · · · · · · · · · · · ·		34	-0.090	-0.009	861.72	0.000	
		35	-0.108	0.015	863.45	0.000	
· 🖣 ·	1 1 1 1	36	-0.126	-0.021	865.84	0.000	

 For LPDI, the value of the Q statistic up to lag 36 is about 865.84 The probability of obtaining such a Q value under the null hypothesis that the sum of 36 squared estimated autocorrelation coefficients is zero is practically zero – show the that LPDI is nonstationary

Perform Unit Root Test to Test For Stationarity: Augmented Dickey Fuller Test

- H null: Series has unit root (meaning series is non-stationarity)
- Series assumptions (your decision-Augmented Dickey Fuller Approach):
- 1. Constant (i.e intercept) ($\Delta Y_{t-1} = \alpha + \delta Y_{t-1} + \varepsilon_t$)
- 2. Constant and trend $(\Delta Y_{t-1} = \alpha + \alpha_2 t + Y_{t-1} + \varepsilon_t)$
- 3. None $(\Delta Y_{t-1} = Y_{t-1} + \varepsilon_t)$

$$\Delta Y_t = \alpha + \emptyset t + \gamma^c Y_{t-1} + \sum_{i=1}^n \emptyset \Delta Y_{t-i} + \varepsilon$$

• If H null is accepted (i.e series has a unit root), it must be differenced to see if stationarity is achieved after 1st differencing

Visualize to determine the your decision:

 The LGDP and LPDI seems o be drifting or a drift - but not a deterministic trends

The ADF test – at level for LGDP

			The East Object	new more t	galek option	s Add-Illis (window net	P
Unit Root Test	×		iew Proc Object Prope	rties Print Na	ame Freeze S Augme	ample Genr Senr	Sheet Graph Fuller Unit Ro	Stats Iden ot Test on
Test type		E L	Null Hypothesis: LGDP Exogenous: Constant Lag Length: 1 (Automati	has a unit root c - based on S	SIC, maxlag=1	1)		
Augmented Dickey-Fuller	\sim					t-Statistic	Prob.*	
Test for unit root in	Lag length		Augmented Dickey-Fulle Fest critical values:	er test statistic 1% level 5% level 10% level		-1.112988 -3.512290 -2.897223 -2.585861	0.7074	
 Level 1st difference 2nd difference 	Automatic selection: Schwarz Info Criterion		MacKinnon (1996) one Augmented Dickey-Fulle Dependent Variable: D(Method: Least Squares	-sided p-value er Test Equatio LGDP)	s. on			
Include in test equation	Maximum lags: 11		Date: 07/11/21 Time: 2 Sample (adjusted): 197 ncluded observations: 1	0:11 1Q3 1991Q4 32 after adjusti	ments	4.01-11-11-		
O Trend and intercept None	O User specified: 2		LGDP(-1) D(LGDP(-1)) C	-0.007470 0.359043 0.065627	0.006712 0.104105 0.055487	-1.112988 3.448856 1.182754	0.2691 0.0009 0.2405	
	OK Cancel	F A	R-squared Adjusted R-squared S.E. of regression Command	0.146323 0.124711 0.009145	Mean depen S.D. depend Akaike info c	dent var ent var riterion	0.006119 0.009775 -6.515295	
0 0.006712 -1.112988	0.2691		Command Captu	ire	_	_	Path =	c:\users\us

The ADF test – First Difference for LGDP

Unit Root Test		×	File Edit Object	View Proc (erties Print Na	Quick Options ame Freeze Si	s Add-ins V ample Genr S	Vindow He Sheet Graph	lp Stats Ident
Test type Augmented Dickey-Fuller	~		Null Hypothesis: D(LGE Exogenous: Constant Lag Length: 0 (Automat	DP) has a unit r tic - based on S	Augmen root BIC, maxlag=11	lted Dickey-Fu	uller Unit Ro	ot Test on D(L
Test for unit root in Level 1st difference 2nd difference	Lag length Automatic selection: Schwarz Info Criterion ~		Augmented Dickey-Full Test critical values: *MacKinnon (1996) one	er test statistic 1% level 5% level 10% level e-sided p-value	S.	t-Statistic -6.100659 -3.512290 -2.897223 -2.585861	Prob.* 0.0000	
Include in test equation Intercept Trend and intercept	Maximum lags: 11		Augmented Dickey-Full Dependent Variable: De Method: Least Squares Date: 07/11/21 Time: 2 Sample (adjusted): 197 Included observations: Variable	er Test Equatio (LGDP,2) 20:14 71Q3 1991Q4 82 after adjust Coefficient	ments Std. Error	t-Statistic	Prob.	
() None	0		D(LGDP(-1)) C	-0.635295 0.003885	0.104136 0.001196	-6.100659 3.249501	0.0000 0.0017	
	OK Cancel		R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.317511 0.308980 0.009159 0.006711	Mean depend S.D. depende Akaike info cr Schwarz crite	dent var ent var iterion rrion	-5.35E-06 0.011018 -6.524126 -6.465426	

ADF test – LPDI at Level

Augmented Dickey-Fuller Unit Root Test on LPDI	Series: LPDI Workfile: TIME SERIES PART 1::Untitled\
Unit Root Test	View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph Stats Augmented Dickey-Fuller Unit Root Test on LPDI
Test type Augmented Dickey-Fuller	Null Hypothesis: LPDI has a unit root A Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=11) t-Statistic Prob.*
Test for unit root in Lag length O Level Automatic selection: Schwarz Info Criterion Schwarz Info Criterion	Augmented Dickey-Fuller test statistic -1.416752 0.5703 Test critical values: 1% level -3.511262 5% level -2.896779 10% level -2.585626 *MacKinnon (1996) one-sided p-values.
Include in test equation Maximum lags: 11 Intercept Trend and intercept None User specified: 2	Augmented Dickey-Fuller Test Equation Dependent Variable: D(LPDI) Method: Least Squares Date: 07/11/21 Time: 20:20 Sample (adjusted): 1971Q2 1991Q4 Included observations: 83 after adjustments
OK Cancel	Variable Coefficient Std. Error t-Statistic Prob. LPDI(-1) -0.010311 0.007278 -1.416752 0.1604 C 0.088285 0.057762 1.528433 0.1303

The ADF test – First Difference for LPDI

Ur	nit Root Test	×
	Test type Augmented Dickey-Fuller	~
	Test for unit root in O Level Ist difference 2nd difference	Lag length Automatic selection: Schwarz Info Criterion ~
	Include in test equation Intercept Trend and intercept	Maximum lags: 11
	○ None	O User specified: 2 OK Cancel
	ariable Coefficient	Std Error t-Statistic Brob

Series: LPDI Workfile	e: TIME SERIES PA	RT 1::Untitle	d\		×
View Proc Object Prop	erties Print Nar	ne Freeze	Sample Genr	Sheet Graph	Stats
Augme	nted Dickey-Full	ler Unit Roo	t Test on D(LP	DI)	
Null Hypothesis: D(LPI	OI) has a unit roo	t			^
Exogenous: Constant					
Lag Length: 0 (Automa	tic - based on SI	C, maxlag=	11)		- 1
			t-Statistic	Prob.*	
Augmented Dickey-Full	er test statistic		-9.436743	0.0000	
Test critical values:	1% level		-3.512290		
	5% level		-2.897223		
	10% level		-2.585861		
*MacKinnon (1996) on	e-sided p-values				
Augmented Dickey-Ful Dependent Variable: D Method: Least Squares Date: 07/11/21 Time: 3 Sample (adjusted): 19 Included observations:	ler Test Equation (LPDI,2) 20:22 71Q3 1991Q4 82 after adjustm	nents			
Variable	Coefficient	Std. Error	r t-Statistic	Prob.	
D(LPDI(-1)) C	-1.053159 0.006752	0.111602 0.001399	2 -9.436743 0 4.827515	0.0000 0.0000	~

Lets compare the data for level and first difference –

 Seem to show that the first difference is stationary – now we are going to test – ADF test – (also can apply ACF in this case – you can try it later)

Lag selection-Before Cointegration

• Before performing cointegration test and VEC modelling, we need to determine the optimal number of lags

Anopeenedion	~ ~
Basics VAR Restrictions	
VAR type Standard VAR Vector Error Correction Bayesian VAR Estimation sample 1971q1 1991q4	Endogenous variables Igdp lpce lpdi lprofits Lag Intervals for Endogenous:
	Exogenous variables
	OK Cancel

VAR Specification

Vector Autoregression Estimates Date: 07/11/21 Time: 20:43 Sample (adjusted): 1971Q3 1991Q4 Included observations: 82 after adjustments Standard errors in () & t-statistics in []

	LGDP	LPCE	LPDI	LPROFITS
LGDP(-1)	0.619799	-0.098604	-0.088364	-2.498874
	(0.14932)	(0.13192)	(0.18546)	(1.29700)
	[4.15093]	[-0.74748]	[-0.47646]	[-1.92666]
LGDP(-2)	-0.058921	-0.265094	-0.077570	0.746310
	(0.14609)	(0.12907)	(0.18145)	(1.26898)
	[-0.40332]	[-2.05395]	[-0.42750]	[0.58812]
LPCE(-1)	0.642212	1.093103	0.826566	3.506485
	(0.15536)	(0.13726)	(0.19297)	(1.34953)
	[4.13363]	[7.96386]	[4.28342]	[2.59831]
LPCE(-2)	-0.045537	0.332415	-0.343753	-0.466922
	(0.18726)	(0.16544)	(0.23258)	(1.62657)
	[-0.24318]	[2.00933]	[-1.47797]	[-0.28706]
LPDI(-1)	0.007415	0.004783	0.575371	-0.176102
	(0.09614)	(0.08493)	(0.11941)	(0.83508)
	[0.07713]	[0.05631]	[4.81850]	[-0.21088]
LPDI(-2)	-0.237745	-0.118214	0.048937	-1.364373
	(0.09638)	(0.08515)	(0.11971)	(0.83719)
	[-2.46672]	[-1.38832]	[0.40879]	[-1.62970]
LPROFITS(-1)	0.005711	-0.027753	-0.056451	1.112872
	(0.01487)	(0.01314)	(0.01847)	(0.12916)
	[0.38410]	[-2.11259]	[-3.05653]	[8.61611]
LPROFITS(-2)	-0.003098	0.023917	0.059836	-0.163436

Lag selection

EViews - [Var: UNTITLED Workfile: TIME SERIES PART 1::Untitled\]

var i	File	Edit	ОЬј	ect	View	Proc	Q	uick (Dp	tions A	dd-in	s Wind	wob	Hel	р
View	Proc	Obje	ct	Print	Name	Freeze	:	Estimat	e	Forecast	Stats	Impuls	eR	esids	
VAR End Exog Date Sam Inclu	Lag ogenou genou e: 07/1 nple: 1 uded (Order ous va is vari 11/21 1971C obsen	Sel riat able Tir 1 1 /atic	ection bles: l es: C ne: 2(991Q bns: 7) Criteri LGDP I 0:45 4 7	ia _PCE l	P	DI LPR	OF	TITS					
L	ag	L	ogL		LR			FPE		AIC		SC		Н	IQ
	0	533 935	.13	56 73	NA 753.32	289	1. 5.	26e-11 47e-16		-13.743	78 · 10 ·	13.622	03 32*	-13.6	9508 54759
	2	961	.23	13	44.639	80*	4.	32e-16	*	-24.031	98* -	22.936	18	-23.5	9367*
	3	974	.58	66	22.201	104	4.	66e-16	i.	-23.963	29 -	22.380	46	-23.3	33017
	4	982	.36	93	12.128	381	5.	87e-16		-23.749	85 -	21.680	00	-22.9	2193
	5	988	.84	70	9.4221	142	7.	72e-16	i.	-23.502	52 ·	20.945	64	-22.4	17979
	6	100	2.8	30	18.885	567	8.	48e-16		-23.450	12 ·	20.406	22	-22.2	23259
	7	101	3.0	49	12.740	066	1.	04e-15		-23.299	97 -	19.769	04	-21.8	38763

* indicates lag order selected by the criterion

- LR: sequential modified LR test statistic (each test at 5% level)
- FPE: Final prediction error
- AIC: Akaike information criterion
- SC: Schwarz information criterion
- HQ: Hannan-Quinn information criterion

- Based on LR FPE AIC SC HQ, the lag selected is lag 1 and 2
- We use this for cointegration test

🌌 EViews - [Var: U	INTITLED W	orkfile: Tl	ME SE	RIES PART 1::	Untitled\]				
📼 File Edit O	bject View	Proc (Quick	Options	Add-ins Wi	indow Help			
View Proc Object	Print Name	e Freeze	Esti	mate Foreca:	st Stats Impu	ulse Resids			
Representatio	ns								
Estimation Ou	utput								
Residuals		•							
Structural Res	iduals		nonte						
		I	inemia						
Endogenous	lable	F	-						
Endogenous (Graph			LPCE	LPDI	LPRO	-ns		
Lag Structure		•		AR Roots Tab	le				
Residual Tests		•		AR Roots Gra	ph				
Cointegration	Test								
connegration	icst		0	Granger Causality/Block Exogeneity Tests					
Impulse Resp		Lag Exclusion Tests							
Variance Deco	mposition		l	.ag Length C	riteria				
Historical Dec	omposition	. [2	1.093103	0.82656	6 3.506	485		
Label		D	() 1	(0.13726)	(0.1929	7) (1.349 21 [2.598	353) 3311		
Laber		ſ	1	[1.00000]	[4.2004	2] [2.000	,51]		
LPCE(-2) -	0.04553	7	0.332415	-0.34375	53 -0.466	922		
		(0.18726	5) 51	(0.16544)	(0.2325	8) (1.626	557) 7061		
	, i	-0.24318	51	[2.00933]	[-1.4779	/] [-0.28/	00]		
LPDI(-1))	0.00741	5	0.004783	0.57537	1 -0.176	102		
		(0.09614	4)	(0.08493)	(0.1194	1) (0.835	508)		
	I	[0.07713	3]	[0.05631]	[4.8185	0] [-0.210)88]		
LPDI(-2)) -	-0.23774	5	-0.118214	0.04893	-1.364	373		
		(0.09638	3)	(0.08515)	(0.1197	1) (0.837	719)		
	I	-2.46672	2]	[-1.38832]	[0.4087	9] [-1.629	970]		
L PROFITS	(-1)	0.00571	1	-0.027753	-0.05645	51 1 1 1 2	872		
Entorno		(0.01487	ò	(0.01314)	(0.0184	7) (0.129	916)		
	I	0.38410	j	[-2.11259]	[-3.0565	3] [8.616	511 <u>j</u>		
	(-2)	0 00300	Q	0.023017	0.05083	-0.163	436		
LINOFIIO	(-)	0.000000		0.020011	0.05905	-0.103	400		

10

Cointegration

- After verifying variables are I(1), we run Johansen Cointegration Test
- The LAGS determined by lag selections criteria (here, 1 2 or 2 lags

Johannan Cointegration Test			~ 1	EViews - [Var: l	UNTITLED Workf	file: TIME SERIES	PART 1::Untitled\]	
ionansen Cointegration Test			~ 1	Can File Edit O	bject View Pr	oc Quick Op	tions Add-ins W	Vindow Help
Cointegration Test Specification	VEC Restrictions			View Proc Object	Print Name F	reeze Estimate	Forecast Stats Imp	pulse Resids
Deterministic trend assumption Assume no deterministic trend () 1) No intercept or trend	n of test I in data: in CE or test VAR	Exog variables*		Date: 07/11/21 Sample (adjuste Included observa Trend assumptio Series: LGDP LP Lags interval (in t	Time: 20:48 d): 1971Q4 1991 ations: 81 after ac on: Linear detern CE LPDI LPROF first differences):	Q4 djustments ninistic trend iTS 1 to 2		
 2) Intercept (no trend) ir 	n CE - no intercept in VAR			Unrestricted Coir	ntegration Rank	Test (Trace)		
Allow for linear deterministic t	rend in data:	Lag intervals		Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
 ③ 3) Intercept (no trend) in ④ 4) Intercept and trend in 	n CE and test VAR n CE - no intercept in VAR	1 2 Lag spec for differenced		None * At most 1 At most 2 At most 3	0.389571 0.136256 0.096042 0.024647	62.04596 22.06495 10.20019 2.021403	47.85613 29.79707 15.49471 3.841466	0.0014 0.2949 0.2657 0.1551
Allow for quadratic determinis 5) Intercept and trend in	itic trend in data: i CE - intercept in VAR	endogenous Critical Values		Trace test indica * denotes rejecti **MacKinnon-Ha	tes 1 cointegrati on of the hypothe aug-Michelis (199	ng eqn(s) at the esis at the 0.05 99) p-values	0.05 level level	
	c			Unrestricted Coir	ntegration Rank	Test (Maximum	Eigenvalue)	
() 6) Summarize all 5 sets o	r assumptions	Size 0.05		Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
* Critical values may not be va variables; do not include C or T	lid with exogenous Trend.	Osterwald-Lenum		None * At most 1 At most 2 At most 3	0.389571 0.136256 0.096042 0.024647	39.98101 11.86476 8.178791 2.021403	27.58434 21.13162 14.26460 3.841466	0.0008 0.5611 0.3608 0.1551
		OK Cancel		Max-eigenvalue * denotes rejecti **MacKinnon-Ha	test indicates 1 o on of the hypothe aug-Michelis (199	cointegrating eq esis at the 0.05 99) p-values	n(s) at the 0.05 leve level	el
				Unrestricted Coi	ntegrating Coeffi	icients (normali:	zed by b'*S11*b=I):	

Vector Error Correction model

- If nonstationary but I(1) time series are cointegrated, we can run the VECM to examine both the short-run and long-run dynamics of the series
- Conventional ECM for cointegrated series:

$$\Delta y_t = \beta_0 + \sum_{i=1}^n \beta_i \Delta y_{t-i} + \sum_{i=0}^n \delta_i \Delta x_{t-i} + \phi z_{t-1} + \mu_t$$

• z is the ECT and is the OLS residuals from the following long-run cointegrating regression:

$$\mathbf{y}_{t} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}\mathbf{x}_{t} + \boldsymbol{\varepsilon}_{t}$$

...and is defined as

 $z_{t-1} = ECT_{t-1} = y_{t-1} - \beta_0 - \beta_1 x_{t-1}$

- The term, *error-correction*, relates to the fact that last period deviation from long-run equilibrium (the *error*) influences the short-run dynamics of the dependent variable
- Thus, the coefficient of ECT, φ, is the speed of adjustment, because it measures the speed at which Y returns to equilibrium after a change in X.

Vector Error Correction model

10	E١	/iews	- [Va	r: UI	VTITLE	D Wo	rkfile:	TIN	1E SEF	RIES	PA
vari	F	ile I	Edit	ОЬ	ject '	View	Proc	Q	uick	Ор	tio
Vie	w]	Proc	[ОЬј	ect 📃	Print	Name	Freez	e 📃	Estim	nate	Fo

-0.002102

(0.01647)

[-0.12761]

Vector Error Correction Estimates Date: 07/11/21 Time: 20:52 Sample (adjusted): 1971Q4 1991Q4 Included observations: 81 after adjustments Standard errors in () & t-statistics in []

D(LPROFITS(-2))

Cointegrating	Eq: C	ointEq1		
LGDP(-1)	1.	000000		
LPCE(-1)	-1 (0 [-9	.326357 0.13437) 0.87064]		
LPDI(-1)	0. (0 [3	.478409).14309) 3.34331]		
LPROFITS(-	1) 0. (0 [1	.012763).00782)].63203]		
С	-1	.724477		
Error Correction:	D(LGDP)	D(LPCE)	D(LPDI)	D(LPROFITS)
CointEq1	-0.342926	-0.448602	-0.307187	-2.443886
	(0.08798)	(0.07148)	(0.10507)	(0.73924)
	[-3.89777]	[-6.27560]	[-2.92357]	[-3.30596]
D(LGDP(-1))	0.051226	0.343598	0.214043	0.318199
	(0.17755)	(0.14426)	(0.21204)	(1.49183)
	[0.28852]	[2.38183]	[1.00943]	[0.21329]
D(LGDP(-2))	0.137742	0.272724	0.588286	-0.760001
	(0.15382)	(0.12498)	(0.18370)	(1.29242)
	[0.89550]	[2.18221]	[3.20243]	[-0.58804]
D(LPCE(-1))	0.101643	-0.601986	0.187181	-0.410255
	(0.23268)	(0.18905)	(0.27789)	(1.95507)
	[0.43683]	[-3.18421]	[0.67359]	[-0.20984]
D(LPCE(-2))	-0.031397	-0.361252	-0.452834	-1.253149
	(0.20637)	(0.16768)	(0.24647)	(1.73403)
	[-0.15214]	[-2.15443]	[-1.83728]	[-0.72268]
D(LPDI(-1))	0.188508	0.222084	-0.105357	1.362502
	(0.11012)	(0.08947)	(0.13151)	(0.92527)
	[1.71183]	[2.48213]	[-0.80111]	[1.47254]
D(LPDI(-2))	-0.057598	0.120343	-0.141553	0.578921
	(0.10160)	(0.08255)	(0.12133)	(0.85365)
	[-0.56693]	[1.45788]	[-1.16664]	[0.67817]
D(LPROFITS(-1))	0.007016	-0.022089	-0.045967	0.166455
	(0.01505)	(0.01223)	(0.01798)	(0.12648)
	[0.46613]	[-1.80608]	[-2.55699]	[1.31609]

-0.020981

(0.01338)

[-1.56763]

-0.004498

[-0.22865]

(0.01967)

0.004291

(0.13841)

The output

• Estimated VECM with LGDP as target variable:

• $DLGDP_t = -0.34292582(ECT(-1)) + 0.051225999D(LGDP(-1)) + 0.137742438D(LGDP(-2)) + 0.101643257D(LPCE(-1)) - 0.031397295D(LPCE(-2)) + 0.188508359D(LPDI(-1)) + 0.057597656D(LPDI(-2)) + 0.007016434 D(LPROFITS(-1)) - 0.00210206 D(LPROFITS(-2)) + 0.007016434 D(LPROFITS(-2)) - 0.007016434 D(LPROFIT$

0.003549

Cointegrating equation (long-run model):

• Ect(-1) = 1.000 LGDP(-1) -1.32636 LPCE(-1) +0.478409 LPDI(-1) +0.012763477 LPROFITS(-1) -1.72448

Make into a system to estimate – finding P value

(-2)) + C(8)*D(LPROFITS(-1)) + C(9)*D(LPROFITS(-2)) + C(10)		
D(LPCE) = C(11)*(LGDP(-1) - 1.32635670644*LPCE(-1) + 0.478409375697*LPDI(-1) + 0.01276347674 1.72447733078) + C(12)*D(LGDP(-1)) + C(13)*D(LGDP(-2)) + C(14)*D(LPCE(-1)) + C(15)*D(LPCE(-2)) + *D(LPDI(-2)) + C(18)*D(LPROFITS(-1)) + C(19)*D(LPROFITS(-2)) + C(20) D(LPDI) = C(21)*(LGDP(-1) - 1.32635670644*LPCE(-1) + 0.478409375697*LPDI(-1) + 0.012763476749 1.72447733078) + C(22)*D(LGDP(-1)) + C(23)*D(LGDP(-2)) + C(24)*D(LPCE(-1)) + C(25)*D(LPCE(-2)) + *D(LPDI(-2)) + C(28)*D(LPROFITS(-1)) + C(29)*D(LPROFITS(-2)) + C(30) D(LPROFITS) = C(31)*(LGDP(-1) - 1.32635670644*LPCE(-1) + 0.478409375697*LPDI(-1) + 0.01276347 1.72447733078) + C(32)*D(LGDP(-1)) + C(33)*D(LGDP(-2)) + C(34)*D(LPCE(-1)) + C(35)*D(LPCE(-2)) + *D(LPDI(-2)) + C(38)*D(LPROFITS(-1)) + C(39)*D(LPROFITS(-2)) + C(40)	ar: VAR01 Workfile: TIME SERIES PART 1::Un Proc Object Print Name Freeze Estima Specify/Estimate Make Residuals Make Structural Residuals Make Model Make Endogenous Group Make Cointegration Group Make System Estimate Structural Factorization Add-ins [-9.87064] LPDI(-1) 0.478409 (0.14309) [3.34331] LPROFITS(-1) 0.012763 (0.00782) [1.63203] C -1.724477	titled\ te Forecast Stats Impulse Resids imates Order by Variable Order by Lag

_					
ro	c Quick	Options Add-ins Windo	w Help		
Fre	ez S	ample	esids		
26	35 G	enerate Series	97*LPDI(-1) +	0.012763476	7491*LPROFI
11	S	how			
320	63 G	raph	697*LPDI(-1)	+ 0.01276347	67491*LPROF
KO	E	mpty Group (Edit Series)	C(20)		
26	38 FI S	eries Statistics	97*LPDI(-1) + C(30)	0.012763476	7491*LPROFI
	G	roup Statistics	Descripti	ve Statistics	•
)-	1. P E:	stimate Equation	Covarian	ces	LF
2(1	E	stimate VAR	Correlati	ons	
			Cross Co	rrelogram	
			Johanser	Cointegration	Test
			Granger	Causality Test	
Equa	tion Estir	mation			×
- 1					~ ~
Spe	ecification	Options			
	Faultion	anorification			
	Equation	Specification Sepandent variable followed by l	ist of regressor	a including ADM	
	ĩ	and PDL terms, OR an explicit eq	uation like Y=c(1)+c(2)*X.	•
	D(LGDP)	= C(1)*(LGDP(-1) - 1.3263567	0644*LPCE(-1)	+ 0.478409375	697*LPDI
	(-1) + 0	.0127634767491*LPROFITS(-1)	- 1.724477330	78) + C(2)*D(L	GDP(-1))
	+ C(3)*	D(LGDP(-2)) + C(4)*D(LPCE(-1)) D(LPDI(-2)) + C(8)*D(LPCE(-1))) + C(5)*D(LPCE (-1)) + C(9)*D(:(-2)) + C(6)*D() PROFITS(-2))	(LPDI(-1)) + C(10)
			(1)) - 0(0) 0(2.110.110(2))	
	Estimatio	n settings			
	Method:	LS - Least Squares (NLS and A	RMA)		~
	Sampler				
	bampie.	1971Q1 1991Q4			
				ОК	Cancel

Finding A p Value for the error correction term – abut 34 percent departure from long run equilibrium corrected each period – the independent variable granger causes LGDP in the long run

EViews - [Equation: UNTITLED Workfile: TIME SERIES PART 1::Untitled\]

C	=	File	Edit	Obj	ject	View	Proc	Q	uick (Dр	tions 🖌	Add-ins	; Wind	low	Help	
1	View	Pro	c Obj	ect	Print	Name	Freeze		Estimat	te	Forecas	t Stats	Resids			

```
\begin{array}{l} \mbox{Dependent Variable: D(LGDP)} \\ \mbox{Method: Least Squares (Gauss-Newton / Marquardt steps)} \\ \mbox{Date: 07/11/21 Time: 21:09} \\ \mbox{Sample (adjusted): 1971Q4 1991Q4} \\ \mbox{Included observations: 81 after adjustments} \\ \mbox{D(LGDP) = C(1)*( LGDP(-1) - 1.32635670644*LPCE(-1) + 0.478409375697 \\ *LPDI(-1) + 0.0127634767491*LPROFITS(-1) - 1.72447733078 ) + C(2) \\ *D(LGDP(-1)) + C(3)*D(LGDP(-2)) + C(4)*D(LPCE(-1)) + C(5)*D(LPCE(-2)) + C(6)*D(LPDI(-1)) + C(7)*D(LPDI(-2)) + C(8)*D(LPROFITS(-1)) + \\ C(9)*D(LPROFITS(-2)) + C(10) \\ \end{array}
```

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-0.342926	0.087980	-3.897768	0.0002
C(2)	0.051226	0.177549	0.288517	0.7738
C(3)	0.137742	0.153817	0.895497	0.3735
C(4)	0.101643	0.232682	0.436833	0.6636
C(5)	-0.031397	0.206375	-0.152137	0.8795
C(6)	0.188508	0.110121	1.711832	0.0913
C(7)	-0.057598	0.101596	-0.566927	0.5726
C(8)	0.007016	0.015053	0.466127	0.6426
C(9)	-0.002102	0.016473	-0.127607	0.8988
C(10)	0.003549	0.001617	2.195118	0.0314
R-squared	0.480903	Mean depend	lent var	0.006117
Adjusted R-squared	0.415101	S.D. depende	ent var	0.009836
S.E. of regression	0.007522	Akaike info cr	iterion	-6.826747
Sum squared resid	0.004018	Schwarz crite	rion	-6.531136
Log likelihood	286.4833	Hannan-Quin	in criter.	-6.708144
F-statistic	7.308428	Durbin-Watso	on stat	1.975212
Prob(F-statistic)	0.000000			

Causality for the short run variables

EViews - [Equation: UNTITLED Workfile: TIME SERIES PART 1::Untitled]

	File	Edit	Object	View	Proc	Quick	Opt	ions /	Add-ins	Window	Help
Viev	w∫Pro	c Obj	ect Prin	t Name	Free	ze Est	imate	Foreca	stStats	Resids	
	Repr	esenta	ations								
	Estin	nation	Output		v	vton / M	arqua	rdt step	os)		
	Actu	al,Fitte	ed, Residu	al	•	1					
	ARM	A Stru	cture			, stments	6				
	Grad	lients a	and Deriv	atives		356706	44*LP	PCE(-1)	+ 0.478	40937569	17
	Cova	riance	Matrix			2)) + C(15(-1 4)*D(I) - 1.72 LPCE(-	1)) + C(5)*D(LPCE	2) E(
		inarree	machix		_ [)(LPDI(2))+	C(8)*D	(LPROF	TTS(-1)) +	-
	Coef	ficient	Diagnos	tics	•	Sca	led Co	oefficier	nts		
	Resi	dual D	iagnostic	s	→	Co	nfider	ice Inter	rvals		
	Stab	ility Di	agnostics		→	Co	nfiden	nce Ellip	se		
	Labe	1			-	Var	iance	Inflatio	n Factors	s	
_	Lube	' ' U(3)		U. 1	577	Co	efficie	nt Varia	nce Deco	omposition	ı
		C(4)		0.1	0164						
		C(5)		-0.0	3139	Wa	ld Tes	t- Coeff	icient Re	estrictions	•
		C(6)		0.1	8850	Om	itted	Variable	es Test - L	likelihood	Ratio
		C(2)		-0.0	0701	Rei	lunda	nt Varia	hles Test	t - Likeliho	od Ratio
		C(9)		-0.0	0210	-			ibles les	C - LIKCIIIIO	
		C(10)	0.0	0354	Fac	tor Br	eakpoir	nt Test		
_		od			0000	2 1400	n dar	andan	tuer	0.0064	

_	
Va	ald Test
	Coefficient restrictions separated by commas
	C(4)=C(5)=C(6)=C(7)=C(8)=C(9)=0

- Does all independent variables granger cause LGDP?
- No causality between LGDP, LPCE,LPDI and LPROFITS or no short run relationship

~	EViews -	[Equation:	UNTITLED	Workfile:	TIME	SERIES	PART	1::Untitle	d∖

 \times

- F	ile I	Edit (Obj	ect \	view	Proc	Qu	iick	Opt	ions	Ad	d-ins	Winde
/iew	Proc	Objec	ct 🗍	Print	Name	Freeze	e 🗍	Estim	nate]	Foreca	st]	Stats	Resids

Wald Test:

Equation: Untitled

Test Statistic	Value	df	Probability
F-statistic	1.006736	(6, 71)	0.4279
Chi-square	6.040415	6	0.4187

Null Hypothesis: C(4)=C(5)=C(6)=C(7)=C(8)=C(9)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(4)	0.101643	0.232682
C(5)	-0.031397	0.206375
C(6)	0.188508	0.110121
C(7)	-0.057598	0.101596
C(8)	0.007016	0.015053
C(9)	-0.002102	0.016473

Restrictions are linear in coefficients.

SERIAL CORRELATION

P value is > than α so no serial correlation

EViews - [Equation: UNTITLED Workfile: TIME SERIES PART 1::Untitled\]

				-
= File Edit Object 🕔	/iew Proc C	Quick Options	Add-ins	Window H
View Proc Object Print	Name Freeze	Estimate Fore	cast Stats F	Resids
Breusch-Godfrey Serial C	Correlation LM	I Test:		
Null hypothesis: No seria	al correlation a	at up to 2 lags		
F-statistic	1.232481	Prob. F(2,69)		0.2979
Obs*R-squared	2,793843	Prob. Chi-Sau	are(2)	0.2474
Dependent Variable: RES	SID			
Method: Least Squares	50			
Date: 07/12/21 Time: 01	:53			
Sample: 19/1Q4 1991Q4	4			
Procomple missing volu	I a logged reci	duale eatto zar	_	
Fresample missing valu	e lagged test	uuais set to zero	J.	
Variable	Coofficient	Std Error	t Statistic	Droh

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-0.135680	0.278611	-0.486989	0.6278
C(2)	-0.649616	0.607335	-1.069616	0.2885
C(3)	0.257058	0.224309	1.145996	0.2558
C(4)	-0.207758	0.422036	-0.492275	0.6241
C(5)	0.268153	0.267758	1.001476	0.3201
C(6)	0.082097	0.191449	0.428820	0.6694
C(7)	0.105485	0.185171	0.569661	0.5708
C(8)	0.000595	0.015013	0.039601	0.9685
C(9)	0.004189	0.017681	0.236918	0.8134
C(10)	0.000685	0.003170	0.215997	0.8296
RESID(-1)	0.806569	0.841377	0.958630	0.3411
RESID(-2)	-0.435144	0.293022	-1.485025	0.1421
R-squared	0.034492	Mean dependent var		-7.98E-18
Adjusted R-squared	-0.119430	S.D. dependent var		0.007087
S.E. of regression	0.007498	Akaike info criterion		-6.812465
Sum squared resid	0.003879	Schwarz criterion		-6.457732
Log likelihood	287.9048	Hannan-Quinn criter.		-6.670141
F-statistic	0.224087	Durbin-Watson stat		2.039448
Prob(F-statistic)	0.995219			

Key Concepts

- 1. Stochastic Processes
 - i. Stationarity Processes
 - ii. Purely Random Processes
 - iii. Non-stationary Processes
- 2. Random Walk Models
 - i. Random Walk with Drift
 - ii. Random Walk without Drift
- 3. Unit Root Stochostic Processes
- 4. Deterministic and Stochastic Trends
- 5. The Phenomenon of Spurious Regression
- 6.Tests of Stationarity/non-stationarity
 - i. Graphical Method
 - ii. Unit Root Tests